路漫漫其修远兮
吾将上下而求索

第11章总结:接口(interface)与反射(reflection)

第11章

11.1 
接口提供了一种方式来 说明 对象的行为:如果谁能搞定这件事,它就可以用在这儿。这是 多态 的 Go 版本
接口定义了一组方法(方法集),但是这些方法不包含(实现)代码:它们没有被实现(它们是抽象的)。接口里也不能包含变量。
通过如下格式定义接口:
type Namer interface {
    Method1(param_list) return_type
    Method2(param_list) return_type
    ...
}
上面的 Namer 是一个 接口类型。

(按照约定,只包含一个方法的)接口的名字由方法名加 [e]r 后缀组成,例如 Printer、Reader、Writer、Logger、Converter 等等。还有一些不常用的方式
(当后缀 er 不合适时),比如 Recoverable,此时接口名以 able 结尾,或者以 I 开头(像 .NET 或 Java 中那样)。

一个接口类型的变量或一个 接口值,它本质上是一个指针,可以指向方法

类型不需要显式声明它实现了某个接口:接口被隐式地实现。多个类型可以实现同一个接口。
实现某个接口的类型(除了实现接口方法外)可以有其他的方法。
一个类型可以实现多个接口。
接口类型可以包含一个实例的引用, 该实例的类型实现了此接口(接口是动态类型)。

即使接口在类型之后才定义,二者处于不同的包中,被单独编译:只要类型实现了接口中的方法,它就实现了此接口。
所有这些特性使得接口具有很大的灵活性。

type Shaper interface {
	Area() float32
}

type Square struct {
	side float32
}

func (sq *Square) Area() float32 {
	return sq.side * sq.side
}

func main() {
	sq1 := new(Square)
	sq1.side = 5

	var areaIntf Shaper
	areaIntf = sq1
	// shorter,without separate declaration:
	// areaIntf := Shaper(sq1)
	// or even:
	// areaIntf := sq1
	fmt.Printf("The square has area: %f\n", areaIntf.Area())
}

下面这个示例更有代表性
type stockPosition struct {
	ticker     string
	sharePrice float32
	count      float32
}

/* method to determine the value of a stock position */
func (s stockPosition) getValue() float32 {
	return s.sharePrice * s.count
}

type car struct {
	make  string
	model string
	price float32
}

/* method to determine the value of a car */
func (c car) getValue() float32 {
	return c.price
}

/* contract that defines different things that have value */
type valuable interface {
	getValue() float32
}

func showValue(asset valuable) {
	fmt.Printf("Value of the asset is %f\n", asset.getValue())
}

func main() {
	var o valuable = stockPosition{"GOOG", 577.20, 4}
	showValue(o)
	o = car{"BMW", "M3", 66500}
	showValue(o)
}


11.2 

一个接口可以包含一个或多个其他的接口,这相当于直接将这些内嵌接口的方法列举在外层接口中一样。
type ReadWrite interface {
    Read(b Buffer) bool
    Write(b Buffer) bool
}

type Lock interface {
    Lock()
    Unlock()
}

type File interface {
    ReadWrite
    Lock
    Close()
}


11.3 
检测和转换接口变量的类型
varI 必须是一个接口变量
应该总是使用上面的方式来进行类型断言
检测接口类型变量的类型是哪个,在执行过程中动态类型可能会有所不同,但是它总是可以分配给接口变量本身的类型。通常我们可以使用 类型断言 来测试
在某个时刻 varI 是否包含类型 T 的值
if v, ok := varI.(T); ok {  // checked type assertion
    Process(v)
    return
}
如果转换合法,v 是 varI 转换到类型 T 的值,ok 会是 true;否则 v 是类型 T 的零值,ok 是 false,也没有运行时错误发生。
下面是示例
type Shaper interface {
	Area() float32
}

type Square struct {
	side float32
}

var areaIntf Shaper

if t, ok := areaIntf.(*Square); ok {
		fmt.Printf("The type of areaIntf is: %T\n", t)
}

注意:如果忽略 areaIntf.(*Square) 中的 * 号,会导致编译错误


11.4 

当判断比较多,可以使用下面的
switch t := areaIntf.(type) {
case *Square:
	fmt.Printf("Type Square %T with value %v\n", t, t)
case *Circle:
	fmt.Printf("Type Circle %T with value %v\n", t, t)
case nil:
	fmt.Printf("nil value: nothing to check?\n")
default:
	fmt.Printf("Unexpected type %T\n", t)
}


11.5 

测试某个值是否实现的某个接口
假定 v 是一个值,然后我们想测试它是否实现了 Stringer 接口,可以这样做:
type Stringer interface {
    String() string
}

if sv, ok := v.(Stringer); ok {
    fmt.Printf("v implements String(): %s\n", sv.String()) // note: sv, not v
}

接口是一种契约,实现类型必须满足它,它描述了类型的行为,规定类型可以做什么。
接口彻底将类型能做什么,以及如何做分离开来,使得相同接口的变量在不同的时刻表现出不同的行为,这就是多态的本质。

使用接口使代码更具有普适性。

行为:吃
不同类型:鸡,狗,猫
怎么吃:鸡:啄,狗:咬,猫:嚼

三个对象都可以实现吃这种接口,
但是具体怎么吃,接口不管。不同类型对应的吃会有不同的方法

先创建不同的对象,接着创建接口变量,将不同对象赋值给接口变量,接口的方法就可以展现不同的行为


11.6 

作用于变量上的方法实际上是不区分变量到底是指针还是值的

在接口上调用方法时,必须有和方法定义时相同的接收者类型或者是可以从具体类型 P 直接可以辨识的:

指针方法可以通过指针调用
值方法可以通过值调用
接收者是值的方法可以通过指针调用,因为指针会首先被解引用(函数接收值,传入的是指针,可以)
接收者是指针的方法不可以通过值调用,因为存储在接口中的值没有地址(函数接收指针,传入的是值,不可以)
将一个值赋值给一个接口时,编译器会确保所有可能的接口方法都可以在此值上被调用,因此不正确的赋值在编译期就会失败。


11.7 

这里的例子还不懂,为啥没有创建Sort接口变量,并将数组传递给Sort接口变量
还有:data []*day 这个是什么类型变量,day类型的指针切片

package main

import (
	"../sort"
	"fmt"
)

func ints() {
	data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
	a := sort.IntArray(data) //conversion to type IntArray
	sort.Sort(a)
	if !sort.IsSorted(a) {
		panic("fails")
	}
	fmt.Printf("The sorted array is: %v\n", a)
}

func strings() {
	data := []string{"monday", "friday", "tuesday", "wednesday", "sunday", "thursday", "", "saturday"}
	a := sort.StringArray(data)
	sort.Sort(a)
	if !sort.IsSorted(a) {
		panic("fail")
	}
	fmt.Printf("The sorted array is: %v\n", a)
}

type day struct {
	num       int
	shortName string
	longName  string
}

type dayArray struct {
	data []*day
}

func (p *dayArray) Len() int           { return len(p.data) }
func (p *dayArray) Less(i, j int) bool { return p.data[i].num < p.data[j].num }
func (p *dayArray) Swap(i, j int)      { p.data[i], p.data[j] = p.data[j], p.data[i] }

func days() {
	Sunday    := day{0, "SUN", "Sunday"}
	Monday    := day{1, "MON", "Monday"}
	Tuesday   := day{2, "TUE", "Tuesday"}
	Wednesday := day{3, "WED", "Wednesday"}
	Thursday  := day{4, "THU", "Thursday"}
	Friday    := day{5, "FRI", "Friday"}
	Saturday  := day{6, "SAT", "Saturday"}
	data := []*day{&Tuesday, &Thursday, &Wednesday, &Sunday, &Monday, &Friday, &Saturday}
	a := dayArray{data}
	sort.Sort(&a)
	if !sort.IsSorted(&a) {
		panic("fail")
	}
	for _, d := range data {
		fmt.Printf("%s ", d.longName)
	}
	fmt.Printf("\n")
}

func main() {
	ints()
	strings()
	days()
}

=================================================
package sort

type Sorter interface {
	Len() int
	Less(i, j int) bool
	Swap(i, j int)
}

func Sort(data Sorter) {
	for pass := 1; pass < data.Len(); pass++ {
		for i := 0; i < data.Len()-pass; i++ {
			if data.Less(i+1, i) {
				data.Swap(i, i+1)
			}
		}
	}
}

func IsSorted(data Sorter) bool {
	n := data.Len()
	for i := n - 1; i > 0; i-- {
		if data.Less(i, i-1) {
			return false
		}
	}
	return true
}

// Convenience types for common cases
type IntArray []int

func (p IntArray) Len() int           { return len(p) }
func (p IntArray) Less(i, j int) bool { return p[i] < p[j] }
func (p IntArray) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

type StringArray []string

func (p StringArray) Len() int           { return len(p) }
func (p StringArray) Less(i, j int) bool { return p[i] < p[j] }
func (p StringArray) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// Convenience wrappers for common cases
func SortInts(a []int)       { Sort(IntArray(a)) }
func SortStrings(a []string) { Sort(StringArray(a)) }

func IntsAreSorted(a []int) bool       { return IsSorted(IntArray(a)) }
func StringsAreSorted(a []string) bool { return IsSorted(StringArray(a)) }


11.7中的例子需要好好理解,很重要
https://github.com/unknwon/the-way-to-go_ZH_CN/blob/master/eBook/11.7.md

11.9

空接口或者最小接口 不包含任何方法,它对实现不做任何要求:
type Any interface {}


11.10-11.14 未看

未经允许不得转载:江哥架构师笔记 » 第11章总结:接口(interface)与反射(reflection)

分享到:更多 ()

评论 抢沙发

评论前必须登录!